宝拉x迅雷 RMVB 下载_ -|五虎├安龙粮食局
淘宝减肥药排行榜十强
只推淘宝安全有效的减肥药

当前位置:宝拉x迅雷 RMVB 下载 > 减肥产品

宝拉x迅雷 RMVB 下载

时间:2020-06-24 12:29  编辑:平凉上高速

宝拉x迅雷 RMVB 下载

因式分解的多种方法

编者按:很多同学在做因式分解的题目时,会觉得无从入手。而面临竞赛题目时,更加摸不着头脑。在此介绍几种因式分解的方法。其实,因式分解没有想象中的那么难。

1】提取公因式

这种方法比较常规、简单,必须掌握。

常用的公式有:完全平方公式、平方差公式等

例一:2x^2-3x=0

解:x(2x-3)=0

x1=0,x2=3/2

这是一类利用因式分解的方程。

总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式

这对我们后面的学习有帮助。

2】公式法

将式子利用公式来分解,也是比较简单的方法。

常用的公式有:完全平方公式、平方差公式等

注意:使用公式法前,建议先提取公因式。

例二:x^2-4分解因式

分析:此题较为简单,可以看出4=22,适用平方差公式a2-b2=(a+b)(a-b)2

解:原式=(x+2)(x-2)

3】十字相乘法

是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。

这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果

 例三:把2x^2-7x+3分解因式.

  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.

  分解二次项系数(只取正因数):

  2=1×2=2×1;

  分解常数项:

  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).

  用画十字交叉线方法表示下列四种情况:

  11

  ╳

  23

  1×3+2×1

  =5

  13

  ╳

  21

  1×1+2×3

  =7

  1-1

  ╳

  2-3

  1×(-3)+2×(-1)

  =-5

  1-3

  ╳

  2-1

  1×(-1)+2×(-3)

  =-7

经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.

解原式=(x-3)(2x-1).

总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:

  a1c1

  ╳

  a2c2

  a1c2+a2c1

  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

  ax2+bx+c=(a1x+c1)(a2x+c2).

这种方法要多实验,多做,多练。它可以包括前两者方法。

4】分组分解法

也是比较常规的方法。

一般是把式子里的各个部分分开分解,再合起来

需要可持续性!

例四:x^2+4x+4y^2-y^2

可以看出,前面三项可以组成平方,结合后面的负平方,可以用平方差公式

解:原式=(x+2)^2-y^2

=(x+2+y)(x+2-y)

总结:分组分解法需要前面的方法作基础,可见前面方法的重要性。

5】换元法

整体代入,免去繁琐的麻烦,亦是建立的之前的基础上

例五:(x+y)^2-2(x+y)+1分解因式

考虑到x+y是以整体出现,展开是十分繁琐的,用a代替x+y

那么原式=a^2-2a+1

=(a-1)^2

回代

原式=(x+y-1)^2

6】主元法

这种方法要难一些,多练即可

即把一个字母作为主要的未知数,另一个作为常数

例六:因式分解16y+2x^2(y+1)^2+(y-1)^2x^4

  分析:本题尚且属于简单例用,只是稍加难度,以y为主元会使原式极其烦琐,而以x为主元的话,原式的难度就大大降低了。

  原式=(y-1)^2x^4+2(y+1)^2x^2+16y---------------------【主元法】

  =(x^2y^2-2x^2y+x^2+8y)(x^2+2)---------------------【十字相乘法】

可见,十字相乘十分重要。

7】双十字相乘法

难度较之前的方法要提升许多。是用来分解形如ax^2+bxy+cy^2+dx+ey+f的二次六项式

  在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列和第2,3列都满足十字相乘规则。则原式=(mx+py+j)(nx+qy+k)

要诀:把缺少的一项当作系数为0,0乘任何数得0,

  例七:ab+b^2+a-b-2分解因式

  解:原式=0×1×a^2+ab+b^2+a-b-2

  =(0×a+b+1)(a+b-2)

  =(b+1)(a+b-2)

8】待定系数法

将式子看成方程,将方程的解代入

这时就要用到1】中提到的知识点了

当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式

例八:x^2+x-2

该题可以用十字相乘来做,这里介绍一种待定系数法

我们可以把它当方程做,x^2+x-2=0

一眼看出,该方程有一根为x=1

那么必有一因式为(x-1)

结合多项式展开原理,另一因式的常数必为2(因为乘-1要为-2)

一次项系数必为1(因为与1相乘要为1)

所以另一因式为(x+2)

分解为(x-1)(x+2)

9】列竖式

让人拍案叫绝的方法。原理和小学的除法差不多。

要建立在待定系数法的方程法上

不足的项要用0补

除的时候,一定要让第一项抵消

例九:3x^3+5x^2-2分解因式

提示:x=-1可以使该式=0,有因式(x+1)

那么该式分解为(x+1)(3x^2+2x-2)

因式分解有9种方法,这么多?

其实是不止的,还有很多很多。不过了解这些,初中的因式分解是不会有问题了。

考虑到每种方法只有一个例题,下面提供一些题目,供大家练习。

(ab+b)^2−(a+b)^2

(a^2−x^2)^2−4ax(x−a)^2

3a^3b^2c-6a^2b^2c^2+9ab^2c^3

xy+6-2x-3y

(3a-b)^2-4(3a-b)(a+3b)+4(a+3b)^2

(x+2)(x-3)+(x+2)(x+4)

12x^2-29x+15

x(y+2)-x-y-1

4x^2+4xy+y^2-4x-2y-3

2x^4+13x^3+20x^2+11x+2

2x^2-7xy-22y^2-5x+35y-3

4m^2+8mn+3n^2

4n^2+4n-15

x^2+2x-8

x^2+3x-10

.x^2+x-6

2x^2+5x-3

x^2+4x-2

x^2-2x-3

5ax+5bx+3ay+3by

x^3-x^2+x-1

18a^2-32b^2-18a+24b

希望同学们能掌握因式分解,把因式分解看成一种乐趣~

。

猜你喜欢

最安全有效的减肥药

最安全有效的减肥药

编辑:小徐

现在的减肥药真的是真假难分,在选择减肥药的同时也应该更加小心,减肥药多种多样,那么如何才能选择最安全有效的减肥药,也成了很多小仙女的内心疑问,下面就跟着宝拉x迅雷 RMVB 下载小编一起看一下,如何选择最安全有效的减肥药。 最安全有效的减肥药选购方法 1、首先需要观察产品的外包装,在包装中可以看到其配方是不是含有激素,含有激素的减肥药对身体的内..

吃减肥药失眠

吃减肥药失眠

编辑:小徐

随着现在流行以瘦为美,很多人会不顾身体的健康选择减肥药,达到快速减肥瘦身的效果,但是很多减肥药都是有副作用的,副作用比较轻的就是失眠现象,那么吃减肥药出现失眠是怎么回事儿?如果出现失眠后,我们应该怎样缓解? 吃减肥药失眠是怎么回事 减肥药中富含安非他命,所以减肥药服用了太多会有失眠现象,服用减肥药期间,身体会逐渐出现抗药性,身..

最新文章