巨猩乔扬八哥影院_ -|五谷不熟,不如稊稗├扶绥财政局
淘宝减肥药排行榜十强
只推淘宝安全有效的减肥药

当前位置:巨猩乔扬八哥影院 > 减肥产品

巨猩乔扬八哥影院

时间:2020-06-23 12:03  编辑:泾县安监局

巨猩乔扬八哥影院

第九章微生物与基因工程

计划学时:2

重点:基因工程的基本操作过程,基因工程的应用。

一、基因工程的发展历史

  基因工程是在本世纪70年代初开始出现的。三项关键技术的建立为基因工程奠定了基础,这三项技术是:DNA的特异切割、DNA的分子克隆和DNA的快速测序。

  早在50年代,阿尔伯(Arber)的实验室就已发现大肠杆菌能够限制侵染的噬菌体,60年代末进而证明大肠杆菌细胞内存在修饰–限制系统,即给宿主自身DNA打上甲基化标记并切割入侵的噬菌体DNA。1970年史密斯(Smith)等人从流感嗜血杆菌(Hemophilusinfluenzae)中分离出特异切割DNA的限制酶。次年,内森斯(Nathans)等人用该酶切割猴病毒SV40DNA,最先绘制出DNA的限制图谱(restrictionmap)。1973年史密斯和内森斯提出修饰–限制酶的命名法。限制性核酸内切酶可用以在特定位点切割DNA,限制酶的发现使分离基因成为可能。为表彰上述科学家在发现和使用限制酶中的功绩,1978年的诺贝尔医学奖被授予阿尔伯、内森斯和史密斯。

  1973年,科恩(Cohen)和博耶(Boyer)等将pSC101质粒作为载体与R质粒的四环素和卡那霉素的抗性基因相融合,并将重组体DNA转化大肠杆菌,首次实现了DNA的分子克隆。

  1975年桑格(Sanger)实验室建立了酶法快速测定DNA序列的技术。1977年吉尔伯特(Gilbert)实验室又建立了化学测定DNA序列的技术。分子克隆和测序方法的建立,使重组DNA技术系统得以产生。1980年诺贝尔化学奖被授予伯格、吉尔伯特和桑格,以肯定他们在发展DNA重组与测序技术中的贡献。

  1977年板仓(Itakura)和博耶用人工合成的生长激素释放抑制素(Somatostatin,SMT)基因构建表达载体,并在大肠杆菌细胞内表达成功,得到第一个基因工程的产品。1982年,在建立转基因植物和转基因动物的技术上均获得重大突破。借助土壤农杆菌Ti质粒可将外源基因导入双子叶植物细胞内并发生整合,从而使植株获得新的遗传性状。同年通过基因工程方法把大鼠生长激素基因注射到小鼠受精卵的雄核中,然后移植到母鼠子宫内,由此培育出巨型小鼠。仅仅10年时间,基因工程在实践中迅速成熟,日趋完善。

 二、基因工程的基本过程

  生物的遗传性状是由基因(即一段DNA分子序列)所编码的遗传信息决定的。基因工程操作首先要获得基因,才能在体外用酶进行“剪切”和“拼接”,然后插入由病毒、质粒或染色体DNA片段构建成的载体,并将重组体DNA转入微生物或动、植物细胞,使其复制(无性繁殖),由此获得基因克隆(clone,无性繁殖系的意思)。基因还可通过DNA聚合酶链式反应(PCR)在体外进行扩增,借助合成的寡核苷酸在体外对基因进行定位诱变和改造。克隆的基因需要进行鉴定或测序。控制适当的条件,使转入的基因在细胞内得到表达,即能产生出人们所需要的产品,或使生物体获得新的性状。这种获得新功能的微生物称为“工程菌”,新类型的动、植物分别称为“工程动物”和“工程植物”,或“转基因动物”和“转基因植物”。基因工程操作过程大致可归纳为以下主要步骤:

①分离或合成基因;

②通过体外重组将基因插入载体;

③将重组DNA导入细胞;

④扩增克隆的基因;

⑤筛选重组体克隆;

⑥对克隆的基因进行鉴定或测序;

⑦控制外源基因的表达;

⑧得到基因产物或转基因动物、转基因植物。上述步骤可用图10-1来表示。

 基因工程是指在基因水平的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下进行切割后,把它和作为载体的DNA分子连接起来,从而获得新物种的一种崭新的育种技术。反以基因工程是人们的分子生物学理论指导下的一种自觉的、能象工程一样可事先设计和控制的育种新技术,是人工的、离体的、分子水平上的一种遗传重组的新技术,是一种可完成超远缘杂交的育种新技术,因而必然是一种最新、最有前途的定向育种新技术。基因工程的主要操作步骤:

一、基因分离(一)分别提取供体细胞(各种生物都可选用)的DNA与作为载体的松弛型细菌质粒(也可用噬菌体或病毒作载体)。(二)根据"工程蓝图"的要求,在供体DNA中,加入专一性很强的限制性酸内切酶,从而获得带有特定基因并露出称为粘接末端的DNA单链部分。必要时,这种粘接末端也可用人工方法进行合成。作为载体的细菌质粒等的DNA也可用同样的限制性核酸内切酶切断,露出其相应

粘接末端。

二、体外重组   把供体细胞的DNA片段和质粒DNA片段放在试管中,在较低的温度(5-6℃)下混和"退火"。由于每一种限制性核酸内切酶所切断的双链DNA片段的粘接末端有相同的核苷酸组成,所以当两者混在一起时,凡粘接末端上碱基互补的片段,就会因氢键的作用而彼此吸引,重新形成双键。这时,在外加连接酶的作用下,供体体的DNA片段与质粒DNA片段的裂口处被"缝合",形成一个完整的有复制能力的环状重组体,即"杂种质粒"。

 

图10-1基因工程基本操作过程示意图

三、载体传递  即通过载体把供体的遗传基因导入到受体细胞内。载体必须具有自主复制的能力。一般可以利用质粒的转化作用,将供体基因带入体细胞内;有时也可用特定的噬菌体(如大肠杆菌的λ噬菌体)或病毒(如在正常猴体内每殖的SV40球形病毒)作载体进行传递。

四、复制、表达在理想情况下,上述这种"杂种质粒"进入受体细胞后,能通过处主复制而得到扩增,并使受体细胞表达出为供体细胞所固有的部分遗传性状,成为"工程菌"。

五、筛选、繁殖当前,由于分离纯净的基因功能单位还,还较困难,所以通过重组后的"杂种质粒"的性状是否都符合原定"蓝图",以及它能否在受体细胞内正常增殖和表达等能力还需经过仔细检查,以便能在大量个体中设法筛选出所需要性状的个性,然后才可加以繁殖和利用。三、微生物学与基因工程的关系

  微生物和微生物学在基因工程的产生和发展中占据了十分重要的地位,可以说一切基因工程操作都离不开微生物。从以下六个方面可以说明:

  ①基因工程所用克隆载体主要是用病毒、噬菌体和质粒改造而成;

  ②基因工程所用千余种工具酶绝大多数是从微生物中分离纯化得到的;

  ③微生物细胞是基因克隆的宿主,即使植物基因工程和动物基因工程也要先构建穿梭载体,使外源基因或重组体DNA在大肠杆菌中得到克隆并进行拼接和改造,才能再转移到植物和动物细胞中;

  ④为大规模表达各种基因产物,从事商品化生产,通常都是将外源基因表达载体导入大肠杆菌或是酵母菌中以构建成工程菌,利用工厂发酵来实现的;

  ⑤微生物的多样性,尤其是抗高温、高盐、高碱、低温等基因,为基因工程提供了极其丰富而独特的基因资源;

  ⑥有关基因结构、性质和表达调控的理论主要也是来自对微生物的研究中取得的,或者是将动、植物基因转移到微生物中后进行研究而取得的,因此微生物学不仅为基因工程提供了操作技术,同时也提供了理论指导。

四、基因工程的应用及展望

  70年代兴起的基因工程,标志着人类改造生物进入一个新的历史时期。由于基因工程的迅速发展和广泛应用,它不仅对生命科学的理论研究产生深刻的影响,而且也为工农业生产和临床医学等实践领域开创一个广阔的应用前景。

  基因工程正在或即将使人们的某些梦想和希望变为现实。基因工程被广泛应用于生产实践,带动了生物技术产生高速发展。现就基因工程一些重要的应用简略叙述如下:

(一)、基因工程药物

  基因工程药物包括一些在生物体内含量甚微但却具有重要生理功能的蛋白质,如激素、酶和抑制剂、细胞因子、抗原和抗体、反义核酸和疫苗等。此外,还可利用重组DNA技术改造蛋白质,设计和生产出自然界不存在的新型蛋白质药物。表10-3列出一些具有重要临床应用价值的重组蛋白质药物。其中,重组胰岛素是作为商品于1982年最早投放市场的基因工程药物;重组疫苗是目前最普遍使用的基因工程药物。这里仅对这两类药物作一介绍。

  1.重组胰岛素(recombinantinsulin)

  胰岛素是在胰脏的胰岛中产生的一种小分子蛋白质,它能提高组织摄取葡萄糖的能力,具有降低血糖的作用,可用于治疗人的糖尿病,现在已能在细菌中克隆人胰岛素基因并用于大规模生产。基因工程生产人胰岛素有两种技术路线。

  其一,首先分别化学合成编码胰岛素A链和B链的基因序列,两条链的5′端各加甲硫氨酸密码子ATG,以便表达后加工。然后将合成的A、B链DNA序列分别插入到质粒载体的β-半乳糖苷酶基因中,克隆基因受β-半乳糖苷酶基因启动子控制。重组质粒转化E.coli,分别表达A链或B链和β-半乳糖苷酶的融合蛋白。由于甲硫氨酸位于融合蛋白的连接处,在体外用溴化氰裂解甲硫氨酸,即可使A链或B链与β-半乳糖苷酶片段分开。然后A链和B链通过二硫键连接,形成具有活性的胰岛素。

  其二,先生产胰岛素原,并用酶切和化学裂解将其转变成胰岛素。具体过程是:将胰岛素原的mRNA经逆转录酶合成cDNA,并在cDNA的5′端加上甲硫氨酸密码子ATG。然后将cDNA插入表达载体中,转化E.coli并表达N端为甲硫氨酸的胰岛素原。将表达产物分离纯化,用胰蛋白酶和羧基肽酶B消化,切去C肽;再用溴化氰处理,除去N-端的甲硫氨酸,即得到胰岛素。

   2.重组疫苗(recombinantvaccines)

  基因工程已成功开发出一系列重组疫苗,这是一类更有效更安全的新型疫苗。所谓重组疫苗是指利用重组DNA技术,克隆并表达抗原基因的编码序列,并将表达产物用作疫苗。

  第一个被批准在人类中使用的重组疫苗是用酵母生产的乙肝表面抗原(HBsAg),它是由乙肝病毒表面蛋白抗原基因在酵母细胞中克隆和表达得到的HBsAg,实际上是中空的病毒颗粒(只含表面抗原蛋白和磷脂),经纯化后可作为乙型肝炎疫苗。

  除用酵母外,昆虫细胞、哺乳动物细胞也被作为宿主,甚至植物也能产生重组疫苗。现在世界上许多实验室正在试验制备HIV的重组疫苗。

 (二)、转基因植物(transgenicplant)

  近年来,随着DNA重组技术的深入发展,科学家们已能将重组DNA导入植物细胞,并成功培育了许多具有新的优良性状的转基因植物。主要包括抗病虫害、抗逆(抗盐、碱等)、耐除草剂、延长水果蔬菜的贮存期等,此外还可用转基因植物生产药物(如人的干扰素)、抗体、疫苗等。转基因植物的构建主要通过Ti质粒,因此这里将主要介绍Ti质粒的改建和应用。由于Ti质粒能整合到植物染色体中的T-DNA片段,使它能够成为植物基因工程的载体。T-DNA从土壤农杆菌转移到植物细胞核内是由T-DNA两侧25个碱基对的重复序列所介导,同时还需要在Ti质粒毒性区(vir)某些基因产物(vir蛋白)的作用。其中virE2和virD2两种蛋白,可以保护T-DNA,使其免受植物细胞中核酸酶的降解,并引导T-DNA进入植物细胞核,使其整合到受体植物的基因组中。转移T-DNA进入植物基因组的这一细菌系统被用来转移重组DNA。但由于Ti质粒太大,不便于操作,因此人们构建了许多Ti质粒衍生物作为植物的克隆载体。主要有两种类型:

  1.二元载体系统(binaryvectorsystem)(图10-14b)

  由2个质粒组成,一个是克隆载体,另一个是辅助质粒。克隆载体通常是由E.coli的一个小质粒构成,便于进行遗传操作。其中含有T-DNA两个末端序列,它对于T-DNA的整合是必需的;还含有DNA复制起点(既有E.coli的复制起点也有根癌土壤杆菌的复制起点),使其可在E.coli和根癌土壤杆菌之间进行穿梭转移。它常含有两个选择标记基因(一个用于在植物细胞中表达,另一个用于在E.coli中表达);此外还含有多克隆位点,便于外源DNA的插入。辅助质粒(helperplasmid)是由经修饰的Ti质粒所构成,该质粒缺失或部分缺失T-DNA区,但却含有一整套的vir基因。当外源DNA被插到克隆载体后,载体被导入E.coli中。然后通过接合转移进入土壤农杆菌中(该菌含有辅助质粒),最后外源基因由T-DNA携带在Ti衍生质粒的作用下转移至植物细胞,与染色体DNA发生重组,为植物提供了一个新的特性。

  2.共整合载体系统(cointegratevectorsystem)

  共整合载体(图10-14a)是由一个缺失了致瘤基因的Ti质粒与一个普通穿梭质粒载体构建而成。其中克隆载体和经修饰的Ti质粒中都含有一段同源的DNA片段。当带有外源基因的克隆载体进入土壤农杆菌后,通过同源重组就可以把克隆的基因整合到Ti质粒上,形成一个共整合载体,然后由Ti质粒提供vir蛋白,协助带有外源基因的T-DNA向植物细胞转移。此外,近年来已成功地发展出一些使外源DNA进入植物细胞的新技术,例如电穿孔、激光穿孔、基因枪等,这些技术使植物基因工程日趋成熟,新的改进性状的工程植物不断被创造出来。

 (三)、转基因动物(transgenicanimals)

   随着现代生物技术的发展,科学家已经能够应用基因工程技术培育转基因动物,从而开辟动物育种新途径。所谓转基因动物是指用重组DNA技术和显微注射技术,将克隆DNA导入受精卵,使外源基因在实验室研究动物以及具有重要商业价值的饲养动物两者均能得到表达的动物。

  构建转基因动物的主要步骤:将克隆的外源基因注射到一个受精卵的细胞核中;然后将接种后的受精卵移植到雌性受体的子宫内;移植后的受精卵发育成为后代,其中部分后代的细胞中携带转入的外源基因并得到表达。

  1982年培育转基因小鼠获得成功,使科学们受到极大鼓舞,随后对各种家禽、家畜鱼类进行基因操作,培育出一系列改进性状的新品种。转基因的瘦肉型猪、高产奶的奶牛、快速生长的家畜和鱼类等已进入实用阶段。利用转基因动物生产药物、血清蛋白、疫苗等也获成功。正在尝试培养带有人体基因的猪,使其器官能够移植人体而不被排斥。

  转基因动物不仅有着广泛的应用前景,而且对于基础生物医学及发育生物学的理论研究也将起着重要的作用。

 (四)、基因治疗(geneTherapy)

  所谓基因治疗是指向靶细胞中引入具有正常功能的基因,以纠正或补偿基因的缺陷,从而达到治疗的目的。

  目前基因治疗大致有三类:

  ①用正常基因去弥补有缺陷的基因,用于治疗遗传性疾病。

  ②通过转移基因以刺激免疫力,用于肿瘤和艾滋病的治疗。

  ③所转移的基因用于配合细胞或药物治疗,以便增强特异性或增强疗效。

  基因治疗为临床医学开辟了崭新的领域。一些目前尚无有效治疗手段的遗传病、肿瘤、心脑血管疾病、老年痴呆症、恶性传染病(如各型肝炎、艾滋病等)可望通过基因治疗来达到防治的目的。1990年美国首次在临床上将腺苷脱氨酶(ADA)基因导入患者外周淋巴细胞,用以治疗因该基因缺陷而引发的重度免疫缺陷综合症(SCID),获得成功。其后在囊性纤维化(CF)、血友病、肿瘤、艾滋病等疾病的基因治疗中作了有益尝试。我国基因治疗也已取得可喜成果。1991年首例B型血友病基因治疗获得理想结果。脑恶性胶质瘤的基因治疗已完成临床前试验。目前基因治疗还有一些关键技术有待改进,主要是:如何选择有效的治疗基因,构建安全、特异和高效表达载体,将重组DNA导入人体并控制其高表达。人类基因组计划的顺利实施和“功能基因组”研究的开展必将有助于人类重要疾病基因的不断发现和基因治疗手段的提高。可以比较乐观地认为,21世纪20年代以前,基因治疗有可能成为临床医学上广泛采用的治疗手段之一,对人类战胜疾病,促进健康,将带来无尽的益处。

五、基因工程在微生物研究中的应用

  基因工程技术作为微生物学研究的重要手段,有力促进了微生物学基础理论研究的发展。分子克隆和构建工程菌对了解微生物的结构与功能、微生物生理与代谢调节以及微生物生态等基本过程,提供了最好方式。通过分子克隆、限制内切酶图谱以及DNA测序等技术,使遗传学家能够快速绘制并研究微生物的基因组。利用克隆基因进行定位诱变、基因分裂(genedisruption)或敲除突变(knockoutmutations),并使这些突变基因导入到微生物染色体中,有助于对突变微生物进行的研究。

  基因工程技术使科学家能够给某个基因贴上"标签"(tag),以便于对该基因进行研究。例如编码β-半乳糖苷酶的基因通常被用于作为一个报导基因,它的酶活性可通过含呈色物质的指示平板而被检测。另一个例子是,将发光细菌(photobacterium)的细菌荧光素酶或者发光甲虫(beetles)的虫萤光素酶(luciferase)基因导入E.coli。当这些基因表达时,在琼脂平板上人们可以发现E.coli工程菌的发光菌落。测定荧光素酶需要加入ATP和荧光素。最近从一种维多利亚水母(Aequoreavictoria)分离并克隆了编码绿色萤光蛋白(greenfluorescentprotein,GFP)的基因,GFP不需要辅助因子,在许多生物学研究中已被用作为报导者或"标签"。

六、基因工程研究展望

  基因工程的兴起导致生物科学发生深刻的变化,主要表现在:第一,引发了生物科学中技术上的创新和迅猛发展。使传统生物技术,发展成以基因重组技术为核心的现代生物技术,即简称为生物技术。生物技术用于工程实践而形成了各类生物工程,主要包括基因工程、酶工程、细胞工程、发酵工程和生化工程等,其中以基因工程发展最快,应用最广。第二,技术上的重大突破,促使生物科学获得前所末有的高速度发展,开辟了新的研究领域,进入了新的研究深度。发育分子生物学、神经分子生物学、分子细胞学、分子生理学、分子进化学等学科领域的蓬勃发展。第三,为改造生物提供强有力的手段,使生物学进入创造性的新时期。从而使得在分子水平上重新设计、改造和创建新的生物形态和新的生物物种成为可能。基因工程能够带来的好处是十分巨大的。以上叙述仅涉及制药、农业和医学领域的某些方面。其实,基因工程的应用范围要广泛得多,在食品、化工、环保、采矿、冶炼、材料、能源等众多领域都有诱人的开发前景。它将在人类实践中发挥更大作用和贡献。当然,它也和其它所有新生事物一样,在它给人们带来巨大利益的同时也面临着严峻的挑战。基因工程与传统生物技术的最根本的区别就在于前者是在基因水平上进行操作,改变已有的基因甚至创造新的物种,这是一项前无古人的崭新的工作。因此,基因工程是否具有潜在的危害性,特别是转移至人体的基因是否会激活原癌基因,基因工程是否会导致出现新型病原生物等问题必然也成为人们关心和争议的焦点,也是当前的研究热点之一。但有一点可以肯定,人们既然能发明一种新技术,必然也将会有能力掌握这门新技术,使它朝着人类进步的方向发展。

小结

  1.基因工程,即DNA重组技术,是在分子生物学、微生物学基础上结合有关现代科学和工程学原理和方法而开拓的新兴技术领域。它的出现促使生物技术迅猛发展,改变了生物科学面貌,并带动了生物技术产业的兴起。

  2.基因工程的操作主要包括:基因的分离、合成和重组,基因的分子克隆,基因的测序和鉴定,基因的体外扩增和定位诱变,基因的表达等技术。

  3.基因克隆载体通常由病毒、噬菌体和细菌质粒DNA改建而成,并需选择适当微生物作为克隆基因的宿主。微生物为基因操作提供了各种工具酶。

思考题

1、在基因工程中,为什么需要克隆载体与表达载体?他们各起什么作用?

2.基因工程的操作的基本过程

。

猜你喜欢

最安全有效的减肥药

最安全有效的减肥药

编辑:小徐

现在的减肥药真的是真假难分,在选择减肥药的同时也应该更加小心,减肥药多种多样,那么如何才能选择最安全有效的减肥药,也成了很多小仙女的内心疑问,下面就跟着巨猩乔扬八哥影院小编一起看一下,如何选择最安全有效的减肥药。 最安全有效的减肥药选购方法 1、首先需要观察产品的外包装,在包装中可以看到其配方是不是含有激素,含有激素的减肥药对身体的内..

吃减肥药失眠

吃减肥药失眠

编辑:小徐

随着现在流行以瘦为美,很多人会不顾身体的健康选择减肥药,达到快速减肥瘦身的效果,但是很多减肥药都是有副作用的,副作用比较轻的就是失眠现象,那么吃减肥药出现失眠是怎么回事儿?如果出现失眠后,我们应该怎样缓解? 吃减肥药失眠是怎么回事 减肥药中富含安非他命,所以减肥药服用了太多会有失眠现象,服用减肥药期间,身体会逐渐出现抗药性,身..

最新文章